基于AutoModel重构jembedding的service.py
This commit is contained in:
parent
8fc4a3c603
commit
feb598d72a
@ -1,56 +1,103 @@
|
||||
import asyncio
|
||||
from typing import List, Iterable, AsyncGenerator, Optional
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM
|
||||
from transformers import AutoTokenizer, AutoModel
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch import Tensor
|
||||
|
||||
|
||||
class JEmbeddingService:
|
||||
def __init__(self, model_path: str = "Qwen/Qwen3-Embedding-0.6B"):
|
||||
def __init__(self, model_path: str = "Qwen/Qwen3-Embedding-0.6B", max_length: int = 8192):
|
||||
self.model_path = model_path
|
||||
self.max_length = max_length
|
||||
self.tokenizer = None
|
||||
self.model = None
|
||||
self._load_model()
|
||||
|
||||
def _load_model(self) -> None:
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(self.model_path, trust_remote_code=True)
|
||||
self.model = AutoModelForCausalLM.from_pretrained(self.model_path, trust_remote_code=True)
|
||||
"""加载模型和分词器"""
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(
|
||||
self.model_path,
|
||||
trust_remote_code=True,
|
||||
padding_side='left' # 左填充,适合指令模型
|
||||
)
|
||||
self.model = AutoModel.from_pretrained(
|
||||
self.model_path,
|
||||
trust_remote_code=True
|
||||
)
|
||||
self.model.eval()
|
||||
|
||||
async def embed(self, texts: List[str]) -> List[List[float]]:
|
||||
def _last_token_pool(self, last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor:
|
||||
"""
|
||||
提取最后一个有效token的隐藏状态
|
||||
这是Qwen3-Embedding模型推荐的池化方式
|
||||
"""
|
||||
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
|
||||
if left_padding:
|
||||
return last_hidden_states[:, -1]
|
||||
else:
|
||||
sequence_lengths = attention_mask.sum(dim=1) - 1
|
||||
batch_size = last_hidden_states.shape[0]
|
||||
return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths]
|
||||
|
||||
async def embed(self, texts: List[str], normalize: bool = True) -> List[List[float]]:
|
||||
"""
|
||||
将文本列表转换为向量表示
|
||||
|
||||
Args:
|
||||
texts: 文本列表
|
||||
normalize: 是否进行L2归一化,默认True
|
||||
|
||||
Returns:
|
||||
向量列表,每个向量对应一个输入文本
|
||||
"""
|
||||
if not isinstance(texts, list) or any(not isinstance(t, str) for t in texts):
|
||||
raise ValueError("texts必须是字符串列表")
|
||||
|
||||
def encode_texts():
|
||||
embeddings = []
|
||||
for text in texts:
|
||||
# Tokenize
|
||||
inputs = self.tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
||||
# 批量分词
|
||||
batch_dict = self.tokenizer(
|
||||
texts,
|
||||
padding=True,
|
||||
truncation=True,
|
||||
max_length=self.max_length,
|
||||
return_tensors="pt"
|
||||
)
|
||||
|
||||
# 移动到模型设备
|
||||
batch_dict = {k: v.to(self.model.device) for k, v in batch_dict.items()}
|
||||
|
||||
# 获取嵌入
|
||||
with torch.no_grad():
|
||||
outputs = self.model(**batch_dict)
|
||||
# 使用last_token_pool提取最后一个有效token的嵌入
|
||||
embeddings = self._last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
|
||||
|
||||
# Get embeddings from last hidden state
|
||||
with torch.no_grad():
|
||||
outputs = self.model(**inputs, output_hidden_states=True)
|
||||
embedding = outputs.hidden_states[-1].mean(dim=1).squeeze()
|
||||
embeddings.append(embedding.tolist())
|
||||
return embeddings
|
||||
# L2归一化(推荐用于相似度计算)
|
||||
if normalize:
|
||||
embeddings = F.normalize(embeddings, p=2, dim=1)
|
||||
|
||||
return embeddings.tolist()
|
||||
|
||||
loop = asyncio.get_running_loop()
|
||||
return await loop.run_in_executor(None, encode_texts)
|
||||
|
||||
async def similarity(self, embeddings_a: List[List[float]], embeddings_b: List[List[float]]):
|
||||
def compute_similarity():
|
||||
import torch.nn.functional as F
|
||||
# Convert to tensors
|
||||
emb_a = torch.tensor(embeddings_a)
|
||||
emb_b = torch.tensor(embeddings_b)
|
||||
# Compute cosine similarity
|
||||
return F.cosine_similarity(emb_a.unsqueeze(1), emb_b.unsqueeze(0), dim=2).tolist()
|
||||
|
||||
loop = asyncio.get_running_loop()
|
||||
return await loop.run_in_executor(None, compute_similarity)
|
||||
|
||||
async def process_batch(self, items: Iterable[str]) -> AsyncGenerator[dict, None]:
|
||||
async def process_batch(self, items: Iterable[str], normalize: bool = True) -> AsyncGenerator[dict, None]:
|
||||
"""
|
||||
批量处理文本,生成向量表示
|
||||
|
||||
Args:
|
||||
items: 文本迭代器
|
||||
normalize: 是否进行L2归一化
|
||||
|
||||
Yields:
|
||||
处理结果字典,包含index、status、embedding或message
|
||||
"""
|
||||
texts: List[str] = []
|
||||
indices: List[int] = []
|
||||
|
||||
# 收集有效文本
|
||||
for idx, text in enumerate(items):
|
||||
try:
|
||||
if not isinstance(text, str):
|
||||
@ -59,17 +106,19 @@ class JEmbeddingService:
|
||||
indices.append(idx)
|
||||
except Exception as e:
|
||||
yield {"index": idx, "status": "error", "message": str(e)}
|
||||
await asyncio.sleep(0)
|
||||
await asyncio.sleep(0) # 让出控制权
|
||||
|
||||
if not texts:
|
||||
return
|
||||
|
||||
try:
|
||||
vectors = await self.embed(texts)
|
||||
# 批量处理所有文本
|
||||
vectors = await self.embed(texts, normalize=normalize)
|
||||
for i, vec in zip(indices, vectors):
|
||||
yield {"index": i + 1, "status": "success", "embedding": vec}
|
||||
yield {"index": i, "status": "success", "embedding": vec}
|
||||
except Exception as e:
|
||||
# 如果批量处理失败,为每个文本返回错误
|
||||
for i in indices:
|
||||
yield {"index": i + 1, "status": "error", "message": str(e)}
|
||||
yield {"index": i, "status": "error", "message": str(e)}
|
||||
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user