jembedding更新为支持离线加载模型
This commit is contained in:
parent
fea1df9990
commit
8fc4a3c603
@ -1,7 +1,6 @@
|
||||
from fastapi import FastAPI
|
||||
from api import router
|
||||
from settings import settings
|
||||
|
||||
from api import router
|
||||
|
||||
app = FastAPI(
|
||||
title="JEmbedding",
|
||||
|
||||
@ -1,27 +1,52 @@
|
||||
import asyncio
|
||||
from typing import List, Iterable, AsyncGenerator, Optional
|
||||
from sentence_transformers import SentenceTransformer
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM
|
||||
import torch
|
||||
|
||||
|
||||
class JEmbeddingService:
|
||||
def __init__(self, model_name: str = "Qwen/Qwen3-Embedding-0.6B"):
|
||||
self.model_name = model_name
|
||||
self.model: Optional[SentenceTransformer] = None
|
||||
def __init__(self, model_path: str = "Qwen/Qwen3-Embedding-0.6B"):
|
||||
self.model_path = model_path
|
||||
self.tokenizer = None
|
||||
self.model = None
|
||||
self._load_model()
|
||||
|
||||
def _load_model(self) -> None:
|
||||
self.model = SentenceTransformer(self.model_name)
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(self.model_path, trust_remote_code=True)
|
||||
self.model = AutoModelForCausalLM.from_pretrained(self.model_path, trust_remote_code=True)
|
||||
self.model.eval()
|
||||
|
||||
async def embed(self, texts: List[str]) -> List[List[float]]:
|
||||
if not isinstance(texts, list) or any(not isinstance(t, str) for t in texts):
|
||||
raise ValueError("texts必须是字符串列表")
|
||||
|
||||
def encode_texts():
|
||||
embeddings = []
|
||||
for text in texts:
|
||||
# Tokenize
|
||||
inputs = self.tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
||||
|
||||
# Get embeddings from last hidden state
|
||||
with torch.no_grad():
|
||||
outputs = self.model(**inputs, output_hidden_states=True)
|
||||
embedding = outputs.hidden_states[-1].mean(dim=1).squeeze()
|
||||
embeddings.append(embedding.tolist())
|
||||
return embeddings
|
||||
|
||||
loop = asyncio.get_running_loop()
|
||||
embeddings = await loop.run_in_executor(None, self.model.encode, texts)
|
||||
return [vec.tolist() if hasattr(vec, 'tolist') else vec for vec in embeddings]
|
||||
return await loop.run_in_executor(None, encode_texts)
|
||||
|
||||
async def similarity(self, embeddings_a: List[List[float]], embeddings_b: List[List[float]]):
|
||||
def compute_similarity():
|
||||
import torch.nn.functional as F
|
||||
# Convert to tensors
|
||||
emb_a = torch.tensor(embeddings_a)
|
||||
emb_b = torch.tensor(embeddings_b)
|
||||
# Compute cosine similarity
|
||||
return F.cosine_similarity(emb_a.unsqueeze(1), emb_b.unsqueeze(0), dim=2).tolist()
|
||||
|
||||
loop = asyncio.get_running_loop()
|
||||
return await loop.run_in_executor(None, self.model.similarity, embeddings_a, embeddings_b)
|
||||
return await loop.run_in_executor(None, compute_similarity)
|
||||
|
||||
async def process_batch(self, items: Iterable[str]) -> AsyncGenerator[dict, None]:
|
||||
texts: List[str] = []
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user