import json import jingrow from jingrow import _ from crm.fcrm.pagetype.crm_dashboard.crm_dashboard import create_default_manager_dashboard from crm.utils import sales_user_only @jingrow.whitelist() def reset_to_default(): jingrow.only_for("System Manager") create_default_manager_dashboard(force=True) @jingrow.whitelist() @sales_user_only def get_dashboard(from_date="", to_date="", user=""): """ Get the dashboard data for the CRM dashboard. """ if not from_date or not to_date: from_date = jingrow.utils.get_first_day(from_date or jingrow.utils.nowdate()) to_date = jingrow.utils.get_last_day(to_date or jingrow.utils.nowdate()) roles = jingrow.get_roles(jingrow.session.user) is_sales_user = "Sales User" in roles and "Sales Manager" not in roles and "System Manager" not in roles if is_sales_user and not user: user = jingrow.session.user dashboard = jingrow.db.exists("CRM Dashboard", "Manager Dashboard") layout = [] if not dashboard: layout = json.loads(create_default_manager_dashboard()) jingrow.db.commit() else: layout = json.loads(jingrow.db.get_value("CRM Dashboard", "Manager Dashboard", "layout") or "[]") for l in layout: method_name = f"get_{l['name']}" if hasattr(jingrow.get_attr("crm.api.dashboard"), method_name): method = getattr(jingrow.get_attr("crm.api.dashboard"), method_name) l["data"] = method(from_date, to_date, user) else: l["data"] = None return layout @jingrow.whitelist() @sales_user_only def get_chart(name, type, from_date="", to_date="", user=""): """ Get number chart data for the dashboard. """ if not from_date or not to_date: from_date = jingrow.utils.get_first_day(from_date or jingrow.utils.nowdate()) to_date = jingrow.utils.get_last_day(to_date or jingrow.utils.nowdate()) roles = jingrow.get_roles(jingrow.session.user) is_sales_user = "Sales User" in roles and "Sales Manager" not in roles and "System Manager" not in roles if is_sales_user and not user: user = jingrow.session.user method_name = f"get_{name}" if hasattr(jingrow.get_attr("crm.api.dashboard"), method_name): method = getattr(jingrow.get_attr("crm.api.dashboard"), method_name) return method(from_date, to_date, user) else: return {"error": _("Invalid chart name")} def get_total_leads(from_date, to_date, user=""): """ Get lead count for the dashboard. """ conds = "" diff = jingrow.utils.date_diff(to_date, from_date) if diff == 0: diff = 1 if user: conds += f" AND lead_owner = '{user}'" result = jingrow.db.sql( f""" SELECT COUNT(CASE WHEN creation >= %(from_date)s AND creation < DATE_ADD(%(to_date)s, INTERVAL 1 DAY) {conds} THEN name ELSE NULL END) as current_month_leads, COUNT(CASE WHEN creation >= %(prev_from_date)s AND creation < %(from_date)s {conds} THEN name ELSE NULL END) as prev_month_leads FROM `tabCRM Lead` """, { "from_date": from_date, "to_date": to_date, "prev_from_date": jingrow.utils.add_days(from_date, -diff), }, as_dict=1, ) current_month_leads = result[0].current_month_leads or 0 prev_month_leads = result[0].prev_month_leads or 0 delta_in_percentage = ( (current_month_leads - prev_month_leads) / prev_month_leads * 100 if prev_month_leads else 0 ) return { "title": _("Total leads"), "tooltip": _("Total number of leads"), "value": current_month_leads, "delta": delta_in_percentage, "deltaSuffix": "%", } def get_ongoing_deals(from_date, to_date, user=""): """ Get ongoing deal count for the dashboard, and also calculate average deal value for ongoing deals. """ conds = "" diff = jingrow.utils.date_diff(to_date, from_date) if diff == 0: diff = 1 if user: conds += f" AND d.deal_owner = '{user}'" result = jingrow.db.sql( f""" SELECT COUNT(CASE WHEN d.creation >= %(from_date)s AND d.creation < DATE_ADD(%(to_date)s, INTERVAL 1 DAY) AND s.type NOT IN ('Won', 'Lost') {conds} THEN d.name ELSE NULL END) as current_month_deals, COUNT(CASE WHEN d.creation >= %(prev_from_date)s AND d.creation < %(from_date)s AND s.type NOT IN ('Won', 'Lost') {conds} THEN d.name ELSE NULL END) as prev_month_deals FROM `tabCRM Deal` d JOIN `tabCRM Deal Status` s ON d.status = s.name """, { "from_date": from_date, "to_date": to_date, "prev_from_date": jingrow.utils.add_days(from_date, -diff), }, as_dict=1, ) current_month_deals = result[0].current_month_deals or 0 prev_month_deals = result[0].prev_month_deals or 0 delta_in_percentage = ( (current_month_deals - prev_month_deals) / prev_month_deals * 100 if prev_month_deals else 0 ) return { "title": _("Ongoing deals"), "tooltip": _("Total number of non won/lost deals"), "value": current_month_deals, "delta": delta_in_percentage, "deltaSuffix": "%", } def get_average_ongoing_deal_value(from_date, to_date, user=""): """ Get ongoing deal count for the dashboard, and also calculate average deal value for ongoing deals. """ conds = "" diff = jingrow.utils.date_diff(to_date, from_date) if diff == 0: diff = 1 if user: conds += f" AND d.deal_owner = '{user}'" result = jingrow.db.sql( f""" SELECT AVG(CASE WHEN d.creation >= %(from_date)s AND d.creation < DATE_ADD(%(to_date)s, INTERVAL 1 DAY) AND s.type NOT IN ('Won', 'Lost') {conds} THEN d.deal_value * IFNULL(d.exchange_rate, 1) ELSE NULL END) as current_month_avg_value, AVG(CASE WHEN d.creation >= %(prev_from_date)s AND d.creation < %(from_date)s AND s.type NOT IN ('Won', 'Lost') {conds} THEN d.deal_value * IFNULL(d.exchange_rate, 1) ELSE NULL END) as prev_month_avg_value FROM `tabCRM Deal` d JOIN `tabCRM Deal Status` s ON d.status = s.name """, { "from_date": from_date, "to_date": to_date, "prev_from_date": jingrow.utils.add_days(from_date, -diff), }, as_dict=1, ) current_month_avg_value = result[0].current_month_avg_value or 0 prev_month_avg_value = result[0].prev_month_avg_value or 0 avg_value_delta = current_month_avg_value - prev_month_avg_value if prev_month_avg_value else 0 return { "title": _("Avg. ongoing deal value"), "tooltip": _("Average deal value of non won/lost deals"), "value": current_month_avg_value, "delta": avg_value_delta, "prefix": get_base_currency_symbol(), } def get_won_deals(from_date, to_date, user=""): """ Get won deal count for the dashboard, and also calculate average deal value for won deals. """ diff = jingrow.utils.date_diff(to_date, from_date) if diff == 0: diff = 1 conds = "" if user: conds += f" AND d.deal_owner = '{user}'" result = jingrow.db.sql( f""" SELECT COUNT(CASE WHEN d.closed_date >= %(from_date)s AND d.closed_date < DATE_ADD(%(to_date)s, INTERVAL 1 DAY) AND s.type = 'Won' {conds} THEN d.name ELSE NULL END) as current_month_deals, COUNT(CASE WHEN d.closed_date >= %(prev_from_date)s AND d.closed_date < %(from_date)s AND s.type = 'Won' {conds} THEN d.name ELSE NULL END) as prev_month_deals FROM `tabCRM Deal` d JOIN `tabCRM Deal Status` s ON d.status = s.name """, { "from_date": from_date, "to_date": to_date, "prev_from_date": jingrow.utils.add_days(from_date, -diff), }, as_dict=1, ) current_month_deals = result[0].current_month_deals or 0 prev_month_deals = result[0].prev_month_deals or 0 delta_in_percentage = ( (current_month_deals - prev_month_deals) / prev_month_deals * 100 if prev_month_deals else 0 ) return { "title": _("Won deals"), "tooltip": _("Total number of won deals based on its closure date"), "value": current_month_deals, "delta": delta_in_percentage, "deltaSuffix": "%", } def get_average_won_deal_value(from_date, to_date, user=""): """ Get won deal count for the dashboard, and also calculate average deal value for won deals. """ diff = jingrow.utils.date_diff(to_date, from_date) if diff == 0: diff = 1 conds = "" if user: conds += f" AND d.deal_owner = '{user}'" result = jingrow.db.sql( f""" SELECT AVG(CASE WHEN d.closed_date >= %(from_date)s AND d.closed_date < DATE_ADD(%(to_date)s, INTERVAL 1 DAY) AND s.type = 'Won' {conds} THEN d.deal_value * IFNULL(d.exchange_rate, 1) ELSE NULL END) as current_month_avg_value, AVG(CASE WHEN d.closed_date >= %(prev_from_date)s AND d.closed_date < %(from_date)s AND s.type = 'Won' {conds} THEN d.deal_value * IFNULL(d.exchange_rate, 1) ELSE NULL END) as prev_month_avg_value FROM `tabCRM Deal` d JOIN `tabCRM Deal Status` s ON d.status = s.name """, { "from_date": from_date, "to_date": to_date, "prev_from_date": jingrow.utils.add_days(from_date, -diff), }, as_dict=1, ) current_month_avg_value = result[0].current_month_avg_value or 0 prev_month_avg_value = result[0].prev_month_avg_value or 0 avg_value_delta = current_month_avg_value - prev_month_avg_value if prev_month_avg_value else 0 return { "title": _("Avg. won deal value"), "tooltip": _("Average deal value of won deals"), "value": current_month_avg_value, "delta": avg_value_delta, "prefix": get_base_currency_symbol(), } def get_average_deal_value(from_date, to_date, user=""): """ Get average deal value for the dashboard. """ diff = jingrow.utils.date_diff(to_date, from_date) if diff == 0: diff = 1 conds = "" if user: conds += f" AND d.deal_owner = '{user}'" result = jingrow.db.sql( f""" SELECT AVG(CASE WHEN d.creation >= %(from_date)s AND d.creation < DATE_ADD(%(to_date)s, INTERVAL 1 DAY) AND s.type != 'Lost' {conds} THEN d.deal_value * IFNULL(d.exchange_rate, 1) ELSE NULL END) as current_month_avg, AVG(CASE WHEN d.creation >= %(prev_from_date)s AND d.creation < %(from_date)s AND s.type != 'Lost' {conds} THEN d.deal_value * IFNULL(d.exchange_rate, 1) ELSE NULL END) as prev_month_avg FROM `tabCRM Deal` AS d JOIN `tabCRM Deal Status` s ON d.status = s.name """, { "from_date": from_date, "to_date": to_date, "prev_from_date": jingrow.utils.add_days(from_date, -diff), }, as_dict=1, ) current_month_avg = result[0].current_month_avg or 0 prev_month_avg = result[0].prev_month_avg or 0 delta = current_month_avg - prev_month_avg if prev_month_avg else 0 return { "title": _("Avg. deal value"), "tooltip": _("Average deal value of ongoing & won deals"), "value": current_month_avg, "prefix": get_base_currency_symbol(), "delta": delta, "deltaSuffix": "%", } def get_average_time_to_close_a_lead(from_date, to_date, user=""): """ Get average time to close deals for the dashboard. """ diff = jingrow.utils.date_diff(to_date, from_date) if diff == 0: diff = 1 conds = "" if user: conds += f" AND d.deal_owner = '{user}'" prev_from_date = jingrow.utils.add_days(from_date, -diff) prev_to_date = from_date result = jingrow.db.sql( f""" SELECT AVG(CASE WHEN d.closed_date >= %(from_date)s AND d.closed_date < DATE_ADD(%(to_date)s, INTERVAL 1 DAY) THEN TIMESTAMPDIFF(DAY, COALESCE(l.creation, d.creation), d.closed_date) END) as current_avg_lead, AVG(CASE WHEN d.closed_date >= %(prev_from_date)s AND d.closed_date < %(prev_to_date)s THEN TIMESTAMPDIFF(DAY, COALESCE(l.creation, d.creation), d.closed_date) END) as prev_avg_lead FROM `tabCRM Deal` AS d JOIN `tabCRM Deal Status` s ON d.status = s.name LEFT JOIN `tabCRM Lead` l ON d.lead = l.name WHERE d.closed_date IS NOT NULL AND s.type = 'Won' {conds} """, { "from_date": from_date, "to_date": to_date, "prev_from_date": prev_from_date, "prev_to_date": prev_to_date, }, as_dict=1, ) current_avg_lead = result[0].current_avg_lead or 0 prev_avg_lead = result[0].prev_avg_lead or 0 delta_lead = current_avg_lead - prev_avg_lead if prev_avg_lead else 0 return { "title": _("Avg. time to close a lead"), "tooltip": _("Average time taken from lead creation to deal closure"), "value": current_avg_lead, "suffix": " days", "delta": delta_lead, "deltaSuffix": " days", "negativeIsBetter": True, } def get_average_time_to_close_a_deal(from_date, to_date, user=""): """ Get average time to close deals for the dashboard. """ diff = jingrow.utils.date_diff(to_date, from_date) if diff == 0: diff = 1 conds = "" if user: conds += f" AND d.deal_owner = '{user}'" prev_from_date = jingrow.utils.add_days(from_date, -diff) prev_to_date = from_date result = jingrow.db.sql( f""" SELECT AVG(CASE WHEN d.closed_date >= %(from_date)s AND d.closed_date < DATE_ADD(%(to_date)s, INTERVAL 1 DAY) THEN TIMESTAMPDIFF(DAY, d.creation, d.closed_date) END) as current_avg_deal, AVG(CASE WHEN d.closed_date >= %(prev_from_date)s AND d.closed_date < %(prev_to_date)s THEN TIMESTAMPDIFF(DAY, d.creation, d.closed_date) END) as prev_avg_deal FROM `tabCRM Deal` AS d JOIN `tabCRM Deal Status` s ON d.status = s.name LEFT JOIN `tabCRM Lead` l ON d.lead = l.name WHERE d.closed_date IS NOT NULL AND s.type = 'Won' {conds} """, { "from_date": from_date, "to_date": to_date, "prev_from_date": prev_from_date, "prev_to_date": prev_to_date, }, as_dict=1, ) current_avg_deal = result[0].current_avg_deal or 0 prev_avg_deal = result[0].prev_avg_deal or 0 delta_deal = current_avg_deal - prev_avg_deal if prev_avg_deal else 0 return { "title": _("Avg. time to close a deal"), "tooltip": _("Average time taken from deal creation to deal closure"), "value": current_avg_deal, "suffix": " days", "delta": delta_deal, "deltaSuffix": " days", "negativeIsBetter": True, } def get_sales_trend(from_date="", to_date="", user=""): """ Get sales trend data for the dashboard. [ { date: new Date('2024-05-01'), leads: 45, deals: 23, won_deals: 12 }, { date: new Date('2024-05-02'), leads: 50, deals: 30, won_deals: 15 }, ... ] """ lead_conds = "" deal_conds = "" if not from_date or not to_date: from_date = jingrow.utils.get_first_day(from_date or jingrow.utils.nowdate()) to_date = jingrow.utils.get_last_day(to_date or jingrow.utils.nowdate()) if user: lead_conds += f" AND lead_owner = '{user}'" deal_conds += f" AND deal_owner = '{user}'" result = jingrow.db.sql( f""" SELECT DATE_FORMAT(date, '%%Y-%%m-%%d') AS date, SUM(leads) AS leads, SUM(deals) AS deals, SUM(won_deals) AS won_deals FROM ( SELECT DATE(creation) AS date, COUNT(*) AS leads, 0 AS deals, 0 AS won_deals FROM `tabCRM Lead` WHERE DATE(creation) BETWEEN %(from)s AND %(to)s {lead_conds} GROUP BY DATE(creation) UNION ALL SELECT DATE(d.creation) AS date, 0 AS leads, COUNT(*) AS deals, SUM(CASE WHEN s.type = 'Won' THEN 1 ELSE 0 END) AS won_deals FROM `tabCRM Deal` d JOIN `tabCRM Deal Status` s ON d.status = s.name WHERE DATE(d.creation) BETWEEN %(from)s AND %(to)s {deal_conds} GROUP BY DATE(d.creation) ) AS daily GROUP BY date ORDER BY date """, {"from": from_date, "to": to_date}, as_dict=True, ) sales_trend = [ { "date": jingrow.utils.get_datetime(row.date).strftime("%Y-%m-%d"), "leads": row.leads or 0, "deals": row.deals or 0, "won_deals": row.won_deals or 0, } for row in result ] return { "data": sales_trend, "title": _("Sales trend"), "subtitle": _("Daily performance of leads, deals, and wins"), "xAxis": { "title": _("Date"), "key": "date", "type": "time", "timeGrain": "day", }, "yAxis": { "title": _("Count"), }, "series": [ {"name": "leads", "type": "line", "showDataPoints": True}, {"name": "deals", "type": "line", "showDataPoints": True}, {"name": "won_deals", "type": "line", "showDataPoints": True}, ], } def get_forecasted_revenue(from_date="", to_date="", user=""): """ Get forecasted revenue for the dashboard. [ { date: new Date('2024-05-01'), forecasted: 1200000, actual: 980000 }, { date: new Date('2024-06-01'), forecasted: 1350000, actual: 1120000 }, { date: new Date('2024-07-01'), forecasted: 1600000, actual: "" }, { date: new Date('2024-08-01'), forecasted: 1500000, actual: "" }, ... ] """ deal_conds = "" if user: deal_conds += f" AND d.deal_owner = '{user}'" result = jingrow.db.sql( f""" SELECT DATE_FORMAT(d.expected_closure_date, '%Y-%m') AS month, SUM( CASE WHEN s.type = 'Lost' THEN d.expected_deal_value * IFNULL(d.exchange_rate, 1) ELSE d.expected_deal_value * IFNULL(d.probability, 0) / 100 * IFNULL(d.exchange_rate, 1) -- forecasted END ) AS forecasted, SUM( CASE WHEN s.type = 'Won' THEN d.deal_value * IFNULL(d.exchange_rate, 1) -- actual ELSE 0 END ) AS actual FROM `tabCRM Deal` AS d JOIN `tabCRM Deal Status` s ON d.status = s.name WHERE d.expected_closure_date >= DATE_SUB(CURDATE(), INTERVAL 12 MONTH) {deal_conds} GROUP BY DATE_FORMAT(d.expected_closure_date, '%Y-%m') ORDER BY month """, as_dict=True, ) for row in result: row["month"] = jingrow.utils.get_datetime(row["month"]).strftime("%Y-%m-01") row["forecasted"] = row["forecasted"] or "" row["actual"] = row["actual"] or "" return { "data": result or [], "title": _("Forecasted revenue"), "subtitle": _("Projected vs actual revenue based on deal probability"), "xAxis": { "title": _("Month"), "key": "month", "type": "time", "timeGrain": "month", }, "yAxis": { "title": _("Revenue") + f" ({get_base_currency_symbol()})", }, "series": [ {"name": "forecasted", "type": "line", "showDataPoints": True}, {"name": "actual", "type": "line", "showDataPoints": True}, ], } def get_funnel_conversion(from_date="", to_date="", user=""): """ Get funnel conversion data for the dashboard. [ { stage: 'Leads', count: 120 }, { stage: 'Qualification', count: 100 }, { stage: 'Negotiation', count: 80 }, { stage: 'Ready to Close', count: 60 }, { stage: 'Won', count: 30 }, ... ] """ lead_conds = "" deal_conds = "" if not from_date or not to_date: from_date = jingrow.utils.get_first_day(from_date or jingrow.utils.nowdate()) to_date = jingrow.utils.get_last_day(to_date or jingrow.utils.nowdate()) if user: lead_conds += f" AND lead_owner = '{user}'" deal_conds += f" AND deal_owner = '{user}'" result = [] # Get total leads total_leads = jingrow.db.sql( f""" SELECT COUNT(*) AS count FROM `tabCRM Lead` WHERE DATE(creation) BETWEEN %(from)s AND %(to)s {lead_conds} """, {"from": from_date, "to": to_date}, as_dict=True, ) total_leads_count = total_leads[0].count if total_leads else 0 result.append({"stage": "Leads", "count": total_leads_count}) result += get_deal_status_change_counts(from_date, to_date, deal_conds) return { "data": result or [], "title": _("Funnel conversion"), "subtitle": _("Lead to deal conversion pipeline"), "xAxis": { "title": _("Stage"), "key": "stage", "type": "category", }, "yAxis": { "title": _("Count"), }, "swapXY": True, "series": [ { "name": "count", "type": "bar", "echartOptions": { "colorBy": "data", }, }, ], } def get_deals_by_stage_axis(from_date="", to_date="", user=""): """ Get deal data by stage for the dashboard. [ { stage: 'Prospecting', count: 120 }, { stage: 'Negotiation', count: 45 }, ... ] """ deal_conds = "" if not from_date or not to_date: from_date = jingrow.utils.get_first_day(from_date or jingrow.utils.nowdate()) to_date = jingrow.utils.get_last_day(to_date or jingrow.utils.nowdate()) if user: deal_conds += f" AND d.deal_owner = '{user}'" result = jingrow.db.sql( f""" SELECT d.status AS stage, COUNT(*) AS count, s.type AS status_type FROM `tabCRM Deal` AS d JOIN `tabCRM Deal Status` s ON d.status = s.name WHERE DATE(d.creation) BETWEEN %(from)s AND %(to)s AND s.type NOT IN ('Lost') {deal_conds} GROUP BY d.status ORDER BY count DESC """, {"from": from_date, "to": to_date}, as_dict=True, ) return { "data": result or [], "title": _("Deals by ongoing & won stage"), "xAxis": { "title": _("Stage"), "key": "stage", "type": "category", }, "yAxis": {"title": _("Count")}, "series": [ {"name": "count", "type": "bar"}, ], } def get_deals_by_stage_donut(from_date="", to_date="", user=""): """ Get deal data by stage for the dashboard. [ { stage: 'Prospecting', count: 120 }, { stage: 'Negotiation', count: 45 }, ... ] """ deal_conds = "" if not from_date or not to_date: from_date = jingrow.utils.get_first_day(from_date or jingrow.utils.nowdate()) to_date = jingrow.utils.get_last_day(to_date or jingrow.utils.nowdate()) if user: deal_conds += f" AND d.deal_owner = '{user}'" result = jingrow.db.sql( f""" SELECT d.status AS stage, COUNT(*) AS count, s.type AS status_type FROM `tabCRM Deal` AS d JOIN `tabCRM Deal Status` s ON d.status = s.name WHERE DATE(d.creation) BETWEEN %(from)s AND %(to)s {deal_conds} GROUP BY d.status ORDER BY count DESC """, {"from": from_date, "to": to_date}, as_dict=True, ) return { "data": result or [], "title": _("Deals by stage"), "subtitle": _("Current pipeline distribution"), "categoryColumn": "stage", "valueColumn": "count", } def get_lost_deal_reasons(from_date="", to_date="", user=""): """ Get lost deal reasons for the dashboard. [ { reason: 'Price too high', count: 20 }, { reason: 'Competitor won', count: 15 }, ... ] """ deal_conds = "" if not from_date or not to_date: from_date = jingrow.utils.get_first_day(from_date or jingrow.utils.nowdate()) to_date = jingrow.utils.get_last_day(to_date or jingrow.utils.nowdate()) if user: deal_conds += f" AND d.deal_owner = '{user}'" result = jingrow.db.sql( f""" SELECT d.lost_reason AS reason, COUNT(*) AS count FROM `tabCRM Deal` AS d JOIN `tabCRM Deal Status` s ON d.status = s.name WHERE DATE(d.creation) BETWEEN %(from)s AND %(to)s AND s.type = 'Lost' {deal_conds} GROUP BY d.lost_reason HAVING reason IS NOT NULL AND reason != '' ORDER BY count DESC """, {"from": from_date, "to": to_date}, as_dict=True, ) return { "data": result or [], "title": _("Lost deal reasons"), "subtitle": _("Common reasons for losing deals"), "xAxis": { "title": _("Reason"), "key": "reason", "type": "category", }, "yAxis": { "title": _("Count"), }, "series": [ {"name": "count", "type": "bar"}, ], } def get_leads_by_source(from_date="", to_date="", user=""): """ Get lead data by source for the dashboard. [ { source: 'Website', count: 120 }, { source: 'Referral', count: 45 }, ... ] """ lead_conds = "" if not from_date or not to_date: from_date = jingrow.utils.get_first_day(from_date or jingrow.utils.nowdate()) to_date = jingrow.utils.get_last_day(to_date or jingrow.utils.nowdate()) if user: lead_conds += f" AND lead_owner = '{user}'" result = jingrow.db.sql( f""" SELECT IFNULL(source, 'Empty') AS source, COUNT(*) AS count FROM `tabCRM Lead` WHERE DATE(creation) BETWEEN %(from)s AND %(to)s {lead_conds} GROUP BY source ORDER BY count DESC """, {"from": from_date, "to": to_date}, as_dict=True, ) return { "data": result or [], "title": _("Leads by source"), "subtitle": _("Lead generation channel analysis"), "categoryColumn": "source", "valueColumn": "count", } def get_deals_by_source(from_date="", to_date="", user=""): """ Get deal data by source for the dashboard. [ { source: 'Website', count: 120 }, { source: 'Referral', count: 45 }, ... ] """ deal_conds = "" if not from_date or not to_date: from_date = jingrow.utils.get_first_day(from_date or jingrow.utils.nowdate()) to_date = jingrow.utils.get_last_day(to_date or jingrow.utils.nowdate()) if user: deal_conds += f" AND deal_owner = '{user}'" result = jingrow.db.sql( f""" SELECT IFNULL(source, 'Empty') AS source, COUNT(*) AS count FROM `tabCRM Deal` WHERE DATE(creation) BETWEEN %(from)s AND %(to)s {deal_conds} GROUP BY source ORDER BY count DESC """, {"from": from_date, "to": to_date}, as_dict=True, ) return { "data": result or [], "title": _("Deals by source"), "subtitle": _("Deal generation channel analysis"), "categoryColumn": "source", "valueColumn": "count", } def get_deals_by_territory(from_date="", to_date="", user=""): """ Get deal data by territory for the dashboard. [ { territory: 'North America', deals: 45, value: 2300000 }, { territory: 'Europe', deals: 30, value: 1500000 }, ... ] """ deal_conds = "" if not from_date or not to_date: from_date = jingrow.utils.get_first_day(from_date or jingrow.utils.nowdate()) to_date = jingrow.utils.get_last_day(to_date or jingrow.utils.nowdate()) if user: deal_conds += f" AND d.deal_owner = '{user}'" result = jingrow.db.sql( f""" SELECT IFNULL(d.territory, 'Empty') AS territory, COUNT(*) AS deals, SUM(COALESCE(d.deal_value, 0) * IFNULL(d.exchange_rate, 1)) AS value FROM `tabCRM Deal` AS d WHERE DATE(d.creation) BETWEEN %(from)s AND %(to)s {deal_conds} GROUP BY d.territory ORDER BY value DESC """, {"from": from_date, "to": to_date}, as_dict=True, ) return { "data": result or [], "title": _("Deals by territory"), "subtitle": _("Geographic distribution of deals and revenue"), "xAxis": { "title": _("Territory"), "key": "territory", "type": "category", }, "yAxis": { "title": _("Number of deals"), }, "y2Axis": { "title": _("Deal value") + f" ({get_base_currency_symbol()})", }, "series": [ {"name": "deals", "type": "bar"}, {"name": "value", "type": "line", "showDataPoints": True, "axis": "y2"}, ], } def get_deals_by_salesperson(from_date="", to_date="", user=""): """ Get deal data by salesperson for the dashboard. [ { salesperson: 'John Smith', deals: 45, value: 2300000 }, { salesperson: 'Jane Doe', deals: 30, value: 1500000 }, ... ] """ deal_conds = "" if not from_date or not to_date: from_date = jingrow.utils.get_first_day(from_date or jingrow.utils.nowdate()) to_date = jingrow.utils.get_last_day(to_date or jingrow.utils.nowdate()) if user: deal_conds += f" AND d.deal_owner = '{user}'" result = jingrow.db.sql( f""" SELECT IFNULL(u.full_name, d.deal_owner) AS salesperson, COUNT(*) AS deals, SUM(COALESCE(d.deal_value, 0) * IFNULL(d.exchange_rate, 1)) AS value FROM `tabCRM Deal` AS d LEFT JOIN `tabUser` AS u ON u.name = d.deal_owner WHERE DATE(d.creation) BETWEEN %(from)s AND %(to)s {deal_conds} GROUP BY d.deal_owner ORDER BY value DESC """, {"from": from_date, "to": to_date}, as_dict=True, ) return { "data": result or [], "title": _("Deals by salesperson"), "subtitle": _("Number of deals and total value per salesperson"), "xAxis": { "title": _("Salesperson"), "key": "salesperson", "type": "category", }, "yAxis": { "title": _("Number of deals"), }, "y2Axis": { "title": _("Deal value") + f" ({get_base_currency_symbol()})", }, "series": [ {"name": "deals", "type": "bar"}, {"name": "value", "type": "line", "showDataPoints": True, "axis": "y2"}, ], } def get_base_currency_symbol(): """ Get the base currency symbol from the system settings. """ base_currency = jingrow.db.get_single_value("FCRM Settings", "currency") or "USD" return jingrow.db.get_value("Currency", base_currency, "symbol") or "" def get_deal_status_change_counts(from_date, to_date, deal_conds=""): """ Get count of each status change (to) for each deal, excluding deals with current status type 'Lost'. Order results by status position. Returns: [ {"status": "Qualification", "count": 120}, {"status": "Negotiation", "count": 85}, ... ] """ result = jingrow.db.sql( f""" SELECT scl.to AS stage, COUNT(*) AS count FROM `tabCRM Status Change Log` scl JOIN `tabCRM Deal` d ON scl.parent = d.name JOIN `tabCRM Deal Status` s ON d.status = s.name JOIN `tabCRM Deal Status` st ON scl.to = st.name WHERE scl.to IS NOT NULL AND scl.to != '' AND s.type != 'Lost' AND DATE(d.creation) BETWEEN %(from)s AND %(to)s {deal_conds} GROUP BY scl.to, st.position ORDER BY st.position ASC """, {"from": from_date, "to": to_date}, as_dict=True, ) return result or []