924 lines
28 KiB
Python
924 lines
28 KiB
Python
# Copyright (c) 2021, JINGROW
|
|
# For license information, please see license.txt
|
|
|
|
from __future__ import annotations
|
|
|
|
from contextlib import suppress
|
|
from datetime import datetime, timedelta
|
|
from enum import Enum
|
|
from typing import TYPE_CHECKING, Final, TypedDict
|
|
|
|
import jingrow
|
|
import requests
|
|
import sqlparse
|
|
from elasticsearch import Elasticsearch
|
|
from elasticsearch_dsl import A, Search
|
|
from jingrow.utils import (
|
|
convert_utc_to_timezone,
|
|
flt,
|
|
get_datetime,
|
|
)
|
|
from jingrow.utils.password import get_decrypted_password
|
|
from pytz import timezone as pytz_timezone
|
|
|
|
from jcloud.agent import Agent
|
|
from jcloud.api.site import protected
|
|
from jcloud.jcloud.pagetype.site_plan.site_plan import get_plan_config
|
|
from jcloud.jcloud.report.binary_log_browser.binary_log_browser import (
|
|
get_data as get_binary_log_data,
|
|
)
|
|
from jcloud.jcloud.report.mariadb_slow_queries.mariadb_slow_queries import execute, normalize_query
|
|
|
|
if TYPE_CHECKING:
|
|
from elasticsearch_dsl.response import AggResponse
|
|
from elasticsearch_dsl.response.aggs import FieldBucket, FieldBucketData
|
|
|
|
class Dataset(TypedDict):
|
|
"""Single element of list of Datasets returned for stacked histogram chart"""
|
|
|
|
path: str
|
|
values: list[float | int] # List of values for each timestamp [43.0, 0, 0...]
|
|
stack: Final[str]
|
|
|
|
class HistBucket(FieldBucket):
|
|
key_as_string: str
|
|
avg_of_duration: AggResponse
|
|
sum_of_duration: AggResponse
|
|
pg_count: int
|
|
key: int
|
|
|
|
class HistogramOfMethod(FieldBucketData):
|
|
buckets: list[HistBucket]
|
|
|
|
class PathBucket(FieldBucket):
|
|
key: str
|
|
histogram_of_method: HistogramOfMethod
|
|
|
|
|
|
class ResourceType(Enum):
|
|
SITE = "site"
|
|
SERVER = "server"
|
|
|
|
|
|
class AggType(Enum):
|
|
COUNT = "count"
|
|
DURATION = "duration"
|
|
AVERAGE_DURATION = "average_duration"
|
|
|
|
|
|
class StackedGroupByChart:
|
|
search: Search
|
|
to_s_divisor: float = 1e6
|
|
normalize_slow_logs: bool = False
|
|
group_by_field: str
|
|
MAX_NO_OF_PATHS: int = 10
|
|
|
|
def __init__(
|
|
self,
|
|
name: str,
|
|
agg_type: AggType,
|
|
resource_type: ResourceType,
|
|
timezone: str,
|
|
timespan: int,
|
|
timegrain: int,
|
|
):
|
|
self.log_server = jingrow.db.get_single_value("Jcloud Settings", "log_server")
|
|
if not self.log_server:
|
|
return
|
|
|
|
self.url = f"https://{self.log_server}/elasticsearch"
|
|
self.password = str(get_decrypted_password("Log Server", self.log_server, "kibana_password"))
|
|
|
|
self.name = name
|
|
self.agg_type = agg_type
|
|
self.resource_type = resource_type
|
|
self.timezone = timezone
|
|
self.timespan = timespan
|
|
self.timegrain = timegrain
|
|
|
|
self.setup_search_filters()
|
|
self.setup_search_aggs()
|
|
|
|
def setup_search_filters(self):
|
|
es = Elasticsearch(self.url, basic_auth=("jingrow", self.password))
|
|
self.start, self.end = get_rounded_boundaries(self.timespan, self.timegrain, self.timezone)
|
|
self.search = (
|
|
Search(using=es, index="filebeat-*")
|
|
.filter(
|
|
"range",
|
|
**{
|
|
"@timestamp": {
|
|
"gte": int(self.start.timestamp() * 1000),
|
|
"lte": int(self.end.timestamp() * 1000),
|
|
}
|
|
},
|
|
)
|
|
.extra(size=0)
|
|
)
|
|
|
|
def setup_search_aggs(self):
|
|
if not self.group_by_field:
|
|
jingrow.throw("Group by field not set")
|
|
if AggType(self.agg_type) is AggType.COUNT:
|
|
self.search.aggs.bucket(
|
|
"method_path",
|
|
"terms",
|
|
field=self.group_by_field,
|
|
size=self.MAX_NO_OF_PATHS,
|
|
order={"path_count": "desc"},
|
|
).bucket("histogram_of_method", self.histogram_of_method())
|
|
self.search.aggs["method_path"].bucket("path_count", self.count_of_values())
|
|
|
|
elif AggType(self.agg_type) is AggType.DURATION:
|
|
self.search.aggs.bucket(
|
|
"method_path",
|
|
"terms",
|
|
field=self.group_by_field,
|
|
size=self.MAX_NO_OF_PATHS,
|
|
order={"outside_sum": "desc"},
|
|
).bucket("histogram_of_method", self.histogram_of_method()).bucket(
|
|
"sum_of_duration", self.sum_of_duration()
|
|
)
|
|
self.search.aggs["method_path"].bucket("outside_sum", self.sum_of_duration()) # for sorting
|
|
|
|
elif AggType(self.agg_type) is AggType.AVERAGE_DURATION:
|
|
self.search.aggs.bucket(
|
|
"method_path",
|
|
"terms",
|
|
field=self.group_by_field,
|
|
size=self.MAX_NO_OF_PATHS,
|
|
order={"outside_avg": "desc"},
|
|
).bucket("histogram_of_method", self.histogram_of_method()).bucket(
|
|
"avg_of_duration", self.avg_of_duration()
|
|
)
|
|
self.search.aggs["method_path"].bucket("outside_avg", self.avg_of_duration())
|
|
|
|
def histogram_of_method(self):
|
|
return A(
|
|
"date_histogram",
|
|
field="@timestamp",
|
|
fixed_interval=f"{self.timegrain}s",
|
|
time_zone=self.timezone,
|
|
min_pg_count=0,
|
|
)
|
|
|
|
def count_of_values(self):
|
|
return A("value_count", field=self.group_by_field)
|
|
|
|
def sum_of_duration(self):
|
|
raise NotImplementedError
|
|
|
|
def avg_of_duration(self):
|
|
raise NotImplementedError
|
|
|
|
def exclude_top_k_data(self, datasets: list[Dataset]):
|
|
raise NotImplementedError
|
|
|
|
def get_other_bucket(self, datasets: list[Dataset], labels):
|
|
# filters present in search already, clear out aggs and response
|
|
self.search.aggs._params = {}
|
|
del self.search._response
|
|
|
|
self.exclude_top_k_data(datasets)
|
|
self.search.aggs.bucket("histogram_of_method", self.histogram_of_method())
|
|
|
|
if AggType(self.agg_type) is AggType.COUNT:
|
|
self.search.aggs["histogram_of_method"].bucket("path_count", self.count_of_values())
|
|
elif AggType(self.agg_type) is AggType.DURATION:
|
|
self.search.aggs["histogram_of_method"].bucket("sum_of_duration", self.sum_of_duration())
|
|
elif AggType(self.agg_type) is AggType.AVERAGE_DURATION:
|
|
self.search.aggs["histogram_of_method"].bucket("avg_of_duration", self.avg_of_duration())
|
|
|
|
aggs = self.search.execute().aggregations
|
|
|
|
aggs.key = "Other" # Set custom key Other bucket
|
|
return self.get_histogram_chart(aggs, labels)
|
|
|
|
def get_histogram_chart(
|
|
self,
|
|
path_bucket: PathBucket,
|
|
labels: list[datetime],
|
|
):
|
|
path_data = {
|
|
"path": path_bucket.key,
|
|
"values": [0] * len(labels),
|
|
"stack": "path",
|
|
}
|
|
hist_bucket: HistBucket
|
|
for hist_bucket in path_bucket.histogram_of_method.buckets:
|
|
label = get_datetime(hist_bucket.key_as_string)
|
|
if label not in labels:
|
|
continue
|
|
path_data["values"][labels.index(label)] = (
|
|
(flt(hist_bucket.avg_of_duration.value) / self.to_s_divisor)
|
|
if AggType(self.agg_type) is AggType.AVERAGE_DURATION
|
|
else (
|
|
flt(hist_bucket.sum_of_duration.value) / self.to_s_divisor
|
|
if AggType(self.agg_type) is AggType.DURATION
|
|
else hist_bucket.pg_count
|
|
if AggType(self.agg_type) is AggType.COUNT
|
|
else 0
|
|
)
|
|
)
|
|
return path_data
|
|
|
|
def get_stacked_histogram_chart(self):
|
|
aggs: AggResponse = self.search.execute().aggregations
|
|
|
|
timegrain_delta = timedelta(seconds=self.timegrain)
|
|
labels = [
|
|
self.start + i * timegrain_delta for i in range((self.end - self.start) // timegrain_delta + 1)
|
|
]
|
|
# method_path has buckets of timestamps with method(eg: avg) of that duration
|
|
datasets = []
|
|
|
|
path_bucket: PathBucket
|
|
for path_bucket in aggs.method_path.buckets:
|
|
datasets.append(self.get_histogram_chart(path_bucket, labels))
|
|
|
|
if datasets:
|
|
datasets.append(self.get_other_bucket(datasets, labels))
|
|
|
|
if self.normalize_slow_logs:
|
|
datasets = normalize_datasets(datasets)
|
|
|
|
labels = [label.replace(tzinfo=None) for label in labels]
|
|
return {"datasets": datasets, "labels": labels}
|
|
|
|
def run(self):
|
|
log_server = jingrow.db.get_single_value("Jcloud Settings", "log_server")
|
|
if not log_server:
|
|
return {"datasets": [], "labels": []}
|
|
return self.get_stacked_histogram_chart()
|
|
|
|
|
|
class RequestGroupByChart(StackedGroupByChart):
|
|
def __init__(self, name, agg_type, resource_type, timezone, timespan, timegrain):
|
|
super().__init__(name, agg_type, resource_type, timezone, timespan, timegrain)
|
|
|
|
def sum_of_duration(self):
|
|
return A("sum", field="json.duration")
|
|
|
|
def avg_of_duration(self):
|
|
return A("avg", field="json.duration")
|
|
|
|
def exclude_top_k_data(self, datasets):
|
|
self.search.exclude("match_phrase", json__request__path=list(map(lambda x: x["path"], datasets)))
|
|
|
|
def setup_search_filters(self):
|
|
super().setup_search_filters()
|
|
self.search = self.search.filter("match_phrase", json__transaction_type="request").exclude(
|
|
"match_phrase", json__request__path="/api/action/ping"
|
|
)
|
|
if self.resource_type == ResourceType.SITE:
|
|
self.search = self.search.filter("match_phrase", json__site=self.name)
|
|
self.group_by_field = "json.request.path"
|
|
elif self.resource_type == ResourceType.SERVER:
|
|
self.search = self.search.filter("match_phrase", agent__name=self.name)
|
|
self.group_by_field = "json.site"
|
|
|
|
|
|
class BackgroundJobGroupByChart(StackedGroupByChart):
|
|
def __init__(self, name, agg_type, resource_type, timezone, timespan, timegrain):
|
|
super().__init__(name, agg_type, resource_type, timezone, timespan, timegrain)
|
|
|
|
def sum_of_duration(self):
|
|
return A("sum", field="json.duration")
|
|
|
|
def avg_of_duration(self):
|
|
return A("avg", field="json.duration")
|
|
|
|
def exclude_top_k_data(self, datasets):
|
|
self.search.exclude("match_phrase", json__job__method=list(map(lambda x: x["path"], datasets)))
|
|
|
|
def setup_search_filters(self):
|
|
super().setup_search_filters()
|
|
self.search = self.search.filter("match_phrase", json__transaction_type="job")
|
|
if self.resource_type == ResourceType.SITE:
|
|
self.search = self.search.filter("match_phrase", json__site=self.name)
|
|
self.group_by_field = "json.job.method"
|
|
elif self.resource_type == ResourceType.SERVER:
|
|
self.search = self.search.filter("match_phrase", agent__name=self.name)
|
|
self.group_by_field = "json.site"
|
|
|
|
|
|
class SlowLogGroupByChart(StackedGroupByChart):
|
|
to_s_divisor = 1e9
|
|
database_name = None
|
|
|
|
def __init__(
|
|
self,
|
|
name,
|
|
agg_type,
|
|
resource_type,
|
|
timezone,
|
|
timespan,
|
|
timegrain,
|
|
normalize_slow_logs=False,
|
|
):
|
|
super().__init__(name, agg_type, resource_type, timezone, timespan, timegrain)
|
|
self.normalize_slow_logs = normalize_slow_logs
|
|
|
|
def sum_of_duration(self):
|
|
return A("sum", field="event.duration")
|
|
|
|
def avg_of_duration(self):
|
|
return A("avg", field="event.duration")
|
|
|
|
def exclude_top_k_data(self, datasets):
|
|
self.search.exclude("match_phrase", mysql__slowlog__query=list(map(lambda x: x["path"], datasets)))
|
|
|
|
def setup_search_filters(self):
|
|
super().setup_search_filters()
|
|
self.search = self.search.exclude(
|
|
"wildcard",
|
|
mysql__slowlog__query="SELECT /\*!40001 SQL_NO_CACHE \*/*", # noqa
|
|
)
|
|
if self.resource_type == ResourceType.SITE:
|
|
self.database_name = jingrow.db.get_value("Site", self.name, "database_name")
|
|
if self.database_name:
|
|
self.search = self.search.filter("match", mysql__slowlog__current_user=self.database_name)
|
|
self.group_by_field = "mysql.slowlog.query"
|
|
elif self.resource_type == ResourceType.SERVER:
|
|
self.search = self.search.filter("match", agent__name=self.name)
|
|
self.group_by_field = "mysql.slowlog.current_user"
|
|
|
|
def run(self):
|
|
if not self.database_name:
|
|
return {"datasets": [], "labels": []}
|
|
return super().run()
|
|
|
|
|
|
@jingrow.whitelist()
|
|
@protected("Site")
|
|
def get(name, timezone, duration="7d"):
|
|
timespan, timegrain = {
|
|
"1h": (60 * 60, 60),
|
|
"6h": (6 * 60 * 60, 5 * 60),
|
|
"24h": (24 * 60 * 60, 30 * 60),
|
|
"7d": (7 * 24 * 60 * 60, 3 * 60 * 60),
|
|
"15d": (15 * 24 * 60 * 60, 6 * 60 * 60),
|
|
}[duration]
|
|
|
|
request_data = get_usage(name, "request", timezone, timespan, timegrain)
|
|
uptime_data = get_uptime(name, timezone, timespan, timegrain)
|
|
|
|
plan = jingrow.get_cached_pg("Site", name).plan
|
|
plan_limit = get_plan_config(plan).get("rate_limit", {}).get("limit") if plan else 0
|
|
|
|
return {
|
|
"usage_counter": [{"value": r.max, "date": r.date} for r in request_data],
|
|
"request_count": [{"value": r.count, "date": r.date} for r in request_data],
|
|
"request_cpu_time": [{"value": r.duration, "date": r.date} for r in request_data],
|
|
"uptime": (uptime_data + [{}] * 60)[:60],
|
|
"plan_limit": plan_limit,
|
|
}
|
|
|
|
|
|
@jingrow.whitelist()
|
|
def get_advanced_analytics(name, timezone, duration="7d"):
|
|
timespan, timegrain = {
|
|
"1h": (60 * 60, 60),
|
|
"6h": (6 * 60 * 60, 5 * 60),
|
|
"24h": (24 * 60 * 60, 30 * 60),
|
|
"7d": (7 * 24 * 60 * 60, 3 * 60 * 60),
|
|
"15d": (15 * 24 * 60 * 60, 6 * 60 * 60),
|
|
}[duration]
|
|
|
|
job_data = get_usage(name, "job", timezone, timespan, timegrain)
|
|
|
|
return {
|
|
"request_count_by_path": get_request_by_(name, "count", timezone, timespan, timegrain),
|
|
"request_duration_by_path": get_request_by_(name, "duration", timezone, timespan, timegrain),
|
|
"average_request_duration_by_path": get_request_by_(
|
|
name, "average_duration", timezone, timespan, timegrain
|
|
),
|
|
"background_job_count_by_method": get_background_job_by_method(
|
|
name, "count", timezone, timespan, timegrain
|
|
),
|
|
"background_job_duration_by_method": get_background_job_by_method(
|
|
name, "duration", timezone, timespan, timegrain
|
|
),
|
|
"average_background_job_duration_by_method": get_background_job_by_method(
|
|
name, "average_duration", timezone, timespan, timegrain
|
|
),
|
|
"slow_logs_by_count": get_slow_logs(name, "count", timezone, timespan, timegrain),
|
|
"slow_logs_by_duration": get_slow_logs(name, "duration", timezone, timespan, timegrain),
|
|
"job_count": [{"value": r.count, "date": r.date} for r in job_data],
|
|
"job_cpu_time": [{"value": r.duration, "date": r.date} for r in job_data],
|
|
}
|
|
|
|
|
|
def get_more_request_detail_fn_names():
|
|
return {
|
|
"/api/action/run_pg_method": get_run_pg_method_methodnames.__name__,
|
|
"/api/action/jingrow.desk.query_report.run": get_query_report_run_reports.__name__,
|
|
}
|
|
|
|
|
|
def get_more_background_job_detail_fn_names():
|
|
return {
|
|
"generate_report": get_generate_report_reports.__name__,
|
|
}
|
|
|
|
|
|
@jingrow.whitelist()
|
|
@protected("Site")
|
|
def daily_usage(name, timezone):
|
|
timespan = 7 * 24 * 60 * 60
|
|
timegrain = 24 * 60 * 60
|
|
request_data = get_usage(name, "request", timezone, timespan, timegrain)
|
|
|
|
plan = jingrow.get_cached_pg("Site", name).plan
|
|
|
|
return {
|
|
"data": [{"value": r.max, "date": r.date} for r in request_data],
|
|
"plan_limit": get_plan_config(plan)["rate_limit"]["limit"] if plan else 0,
|
|
}
|
|
|
|
|
|
def rounded_time(dt=None, round_to=60):
|
|
"""Round a datetime object to any time lapse in seconds
|
|
dt : datetime.datetime object, default now.
|
|
round_to : Closest number of seconds to round to, default 1 minute.
|
|
ref: https://stackoverflow.com/questions/3463930/how-to-round-the-minute-of-a-datetime-object/10854034#10854034
|
|
"""
|
|
if dt is None:
|
|
dt = datetime.datetime.now()
|
|
seconds = (dt.replace(tzinfo=None) - dt.min).seconds
|
|
rounding = (seconds + round_to / 2) // round_to * round_to
|
|
return dt + timedelta(0, rounding - seconds, -dt.microsecond)
|
|
|
|
|
|
def get_rounded_boundaries(timespan: int, timegrain: int, timezone: str = "UTC"):
|
|
"""
|
|
Round the start and end time to the nearest interval, because Elasticsearch does this
|
|
"""
|
|
end = datetime.now(pytz_timezone(timezone))
|
|
start = jingrow.utils.add_to_date(end, seconds=-timespan)
|
|
|
|
return rounded_time(start, timegrain), rounded_time(end, timegrain)
|
|
|
|
|
|
def get_uptime(site, timezone, timespan, timegrain):
|
|
monitor_server = jingrow.db.get_single_value("Jcloud Settings", "monitor_server")
|
|
if not monitor_server:
|
|
return []
|
|
|
|
url = f"https://{monitor_server}/prometheus/api/v1/query_range"
|
|
password = get_decrypted_password("Monitor Server", monitor_server, "grafana_password")
|
|
|
|
end = datetime.now(pytz_timezone(timezone))
|
|
start = jingrow.utils.add_to_date(end, seconds=-timespan)
|
|
query = {
|
|
"query": (
|
|
f'sum(sum_over_time(probe_success{{job="site", instance="{site}"}}[{timegrain}s])) by (instance) / sum(count_over_time(probe_success{{job="site", instance="{site}"}}[{timegrain}s])) by (instance)'
|
|
),
|
|
"start": start.timestamp(),
|
|
"end": end.timestamp(),
|
|
"step": f"{timegrain}s",
|
|
}
|
|
|
|
response = requests.get(url, params=query, auth=("jingrow", password)).json()
|
|
|
|
buckets = []
|
|
if not response["data"]["result"]:
|
|
return []
|
|
for timestamp, value in response["data"]["result"][0]["values"]:
|
|
buckets.append(
|
|
jingrow._dict(
|
|
{
|
|
"date": convert_utc_to_timezone(datetime.fromtimestamp(timestamp), timezone),
|
|
"value": float(value),
|
|
}
|
|
)
|
|
)
|
|
return buckets
|
|
|
|
|
|
def normalize_datasets(datasets: list[Dataset]) -> list[Dataset]:
|
|
"""Merge similar queries and sum their durations/counts"""
|
|
n_datasets = {}
|
|
for data_dict in datasets:
|
|
n_query = normalize_query(data_dict["path"])
|
|
if n_datasets.get(n_query):
|
|
n_datasets[n_query]["values"] = [
|
|
x + y for x, y in zip(n_datasets[n_query]["values"], data_dict["values"])
|
|
]
|
|
else:
|
|
data_dict["path"] = n_query
|
|
n_datasets[n_query] = data_dict
|
|
return list(n_datasets.values())
|
|
|
|
|
|
def get_request_by_(
|
|
name, agg_type: AggType, timezone: str, timespan: int, timegrain: int, resource_type=ResourceType.SITE
|
|
):
|
|
"""
|
|
:param name: site/server name depending on resource_type
|
|
:param agg_type: count, duration, average_duration
|
|
:param timezone: timezone of timespan
|
|
:param timespan: duration in seconds
|
|
:param timegrain: interval in seconds
|
|
:param resource_type: filter by site or server
|
|
"""
|
|
return RequestGroupByChart(name, agg_type, resource_type, timezone, timespan, timegrain).run()
|
|
|
|
|
|
def get_background_job_by_method(site, agg_type, timezone, timespan, timegrain):
|
|
return BackgroundJobGroupByChart(site, agg_type, ResourceType.SITE, timezone, timespan, timegrain).run()
|
|
|
|
|
|
def get_slow_logs(
|
|
name, agg_type, timezone, timespan, timegrain, resource_type=ResourceType.SITE, normalize=False
|
|
):
|
|
return SlowLogGroupByChart(name, agg_type, resource_type, timezone, timespan, timegrain, normalize).run()
|
|
|
|
|
|
class RunDocMethodMethodNames(RequestGroupByChart):
|
|
def __init__(self, name, agg_type, timezone, timespan, timegrain):
|
|
super().__init__(name, agg_type, ResourceType.SITE, timezone, timespan, timegrain)
|
|
self.group_by_field = "json.methodname"
|
|
|
|
def setup_search_filters(self):
|
|
super().setup_search_filters()
|
|
self.search = self.search.filter("match_phrase", json__request__path="/api/action/run_pg_method")
|
|
|
|
|
|
def get_run_pg_method_methodnames(site, agg_type, timezone, timespan, timegrain):
|
|
return RunDocMethodMethodNames(site, agg_type, timezone, timespan, timegrain).run()
|
|
|
|
|
|
class QueryReportRunReports(RequestGroupByChart):
|
|
def __init__(self, name, agg_type, timezone, timespan, timegrain):
|
|
super().__init__(name, agg_type, ResourceType.SITE, timezone, timespan, timegrain)
|
|
self.group_by_field = "json.report"
|
|
|
|
def setup_search_filters(self):
|
|
super().setup_search_filters()
|
|
self.search = self.search.filter(
|
|
"match_phrase", json__request__path="/api/action/jingrow.desk.query_report.run"
|
|
)
|
|
|
|
|
|
def get_query_report_run_reports(site, agg_type, timezone, timespan, timegrain):
|
|
return QueryReportRunReports(site, agg_type, timezone, timespan, timegrain).run()
|
|
|
|
|
|
class GenerateReportReports(BackgroundJobGroupByChart):
|
|
def __init__(self, name, agg_type, timezone, timespan, timegrain):
|
|
super().__init__(name, agg_type, ResourceType.SITE, timezone, timespan, timegrain)
|
|
self.group_by_field = "json.report"
|
|
|
|
def setup_search_filters(self):
|
|
super().setup_search_filters()
|
|
self.search = self.search.filter("match_phrase", json__job__method="generate_report")
|
|
|
|
|
|
def get_generate_report_reports(site, agg_type, timezone, timespan, timegrain):
|
|
return GenerateReportReports(site, agg_type, timezone, timespan, timegrain).run()
|
|
|
|
|
|
def get_usage(site, type, timezone, timespan, timegrain):
|
|
log_server = jingrow.db.get_single_value("Jcloud Settings", "log_server")
|
|
if not log_server:
|
|
return {"datasets": [], "labels": []}
|
|
|
|
url = f"https://{log_server}/elasticsearch/filebeat-*/_search"
|
|
password = get_decrypted_password("Log Server", log_server, "kibana_password")
|
|
|
|
query = {
|
|
"aggs": {
|
|
"date_histogram": {
|
|
"date_histogram": {
|
|
"field": "@timestamp",
|
|
"fixed_interval": f"{timegrain}s",
|
|
},
|
|
"aggs": {
|
|
"duration": {"sum": {"field": "json.duration"}},
|
|
"count": {"value_count": {"field": "json.duration"}},
|
|
"max": {"max": {"field": "json.request.counter"}},
|
|
},
|
|
}
|
|
},
|
|
"size": 0,
|
|
"query": {
|
|
"bool": {
|
|
"filter": [
|
|
{"match_phrase": {"json.transaction_type": type}},
|
|
{"match_phrase": {"json.site": site}},
|
|
{"range": {"@timestamp": {"gte": f"now-{timespan}s", "lte": "now"}}},
|
|
]
|
|
}
|
|
},
|
|
}
|
|
|
|
response = requests.post(url, json=query, auth=("jingrow", password)).json()
|
|
|
|
buckets = []
|
|
|
|
if not response.get("aggregations"):
|
|
return {"datasets": [], "labels": []}
|
|
|
|
for bucket in response["aggregations"]["date_histogram"]["buckets"]:
|
|
buckets.append(
|
|
jingrow._dict(
|
|
{
|
|
"date": convert_utc_to_timezone(
|
|
get_datetime(bucket["key_as_string"]).replace(tzinfo=None),
|
|
timezone,
|
|
),
|
|
"count": bucket["count"]["value"],
|
|
"duration": bucket["duration"]["value"],
|
|
"max": bucket["max"]["value"],
|
|
}
|
|
)
|
|
)
|
|
return buckets
|
|
|
|
|
|
def get_current_cpu_usage(site):
|
|
try:
|
|
log_server = jingrow.db.get_single_value("Jcloud Settings", "log_server")
|
|
if not log_server:
|
|
return 0
|
|
|
|
url = f"https://{log_server}/elasticsearch/filebeat-*/_search"
|
|
password = get_decrypted_password("Log Server", log_server, "kibana_password")
|
|
|
|
query = {
|
|
"query": {
|
|
"bool": {
|
|
"filter": [
|
|
{"match_phrase": {"json.transaction_type": "request"}},
|
|
{"match_phrase": {"json.site": site}},
|
|
]
|
|
}
|
|
},
|
|
"sort": {"@timestamp": "desc"},
|
|
"size": 1,
|
|
}
|
|
|
|
response = requests.post(url, json=query, auth=("jingrow", password)).json()
|
|
hits = response["hits"]["hits"]
|
|
if hits:
|
|
return hits[0]["_source"]["json"]["request"].get("counter", 0)
|
|
return 0
|
|
except Exception:
|
|
return 0
|
|
|
|
|
|
def get_current_cpu_usage_for_sites_on_server(server):
|
|
result = {}
|
|
with suppress(Exception):
|
|
log_server = jingrow.db.get_single_value("Jcloud Settings", "log_server")
|
|
if not log_server:
|
|
return result
|
|
|
|
url = f"https://{log_server}/elasticsearch/filebeat-*/_search"
|
|
password = get_decrypted_password("Log Server", log_server, "kibana_password")
|
|
|
|
query = {
|
|
"aggs": {
|
|
"0": {
|
|
"terms": {"field": "json.site", "size": 1000},
|
|
"aggs": {
|
|
"usage": {
|
|
"filter": {"exists": {"field": "json.request.counter"}},
|
|
"aggs": {
|
|
"counter": {
|
|
"top_metrics": {
|
|
"metrics": {"field": "json.request.counter"},
|
|
"size": 1,
|
|
"sort": {"@timestamp": "desc"},
|
|
}
|
|
}
|
|
},
|
|
}
|
|
},
|
|
}
|
|
},
|
|
"size": 0,
|
|
"query": {
|
|
"bool": {
|
|
"filter": [
|
|
{
|
|
"bool": {
|
|
"filter": [
|
|
{
|
|
"bool": {
|
|
"should": [
|
|
{"term": {"json.transaction_type": {"value": "request"}}}
|
|
],
|
|
"minimum_should_match": 1,
|
|
}
|
|
},
|
|
{
|
|
"bool": {
|
|
"should": [{"term": {"agent.name": {"value": server}}}],
|
|
"minimum_should_match": 1,
|
|
}
|
|
},
|
|
]
|
|
}
|
|
},
|
|
{"range": {"@timestamp": {"gte": "now-1d"}}},
|
|
]
|
|
}
|
|
},
|
|
}
|
|
|
|
response = requests.post(url, json=query, auth=("jingrow", password)).json()
|
|
for row in response["aggregations"]["0"]["buckets"]:
|
|
site = row["key"]
|
|
metric = row["usage"]["counter"]["top"]
|
|
if metric:
|
|
result[site] = metric[0]["metrics"]["json.request.counter"]
|
|
return result
|
|
|
|
|
|
@jingrow.whitelist()
|
|
@protected("Site")
|
|
def request_logs(name, timezone, date, sort=None, start=0):
|
|
log_server = jingrow.db.get_single_value("Jcloud Settings", "log_server")
|
|
if not log_server:
|
|
return []
|
|
|
|
url = f"https://{log_server}/elasticsearch/filebeat-*/_search"
|
|
password = get_decrypted_password("Log Server", log_server, "kibana_password")
|
|
|
|
sort_value = {
|
|
"Time (Ascending)": {"@timestamp": "asc"},
|
|
"Time (Descending)": {"@timestamp": "desc"},
|
|
"CPU Time (Descending)": {"json.duration": "desc"},
|
|
}[sort or "CPU Time (Descending)"]
|
|
|
|
query = {
|
|
"query": {
|
|
"bool": {
|
|
"filter": [
|
|
{"match_phrase": {"json.transaction_type": "request"}},
|
|
{"match_phrase": {"json.site": name}},
|
|
{"range": {"@timestamp": {"gt": f"{date}||-1d/d", "lte": f"{date}||/d"}}},
|
|
],
|
|
"must_not": [{"match_phrase": {"json.request.path": "/api/action/ping"}}],
|
|
}
|
|
},
|
|
"sort": sort_value,
|
|
"from": start,
|
|
"size": 10,
|
|
}
|
|
|
|
response = requests.post(url, json=query, auth=("jingrow", password)).json()
|
|
out = []
|
|
for d in response["hits"]["hits"]:
|
|
data = d["_source"]["json"]
|
|
data["timestamp"] = convert_utc_to_timezone(
|
|
jingrow.utils.get_datetime(data["timestamp"]).replace(tzinfo=None), timezone
|
|
)
|
|
out.append(data)
|
|
|
|
return out
|
|
|
|
|
|
@jingrow.whitelist()
|
|
@protected("Site")
|
|
def binary_logs(name, start_time, end_time, pattern: str = ".*", max_lines: int = 4000):
|
|
filters = jingrow._dict(
|
|
site=name,
|
|
database=jingrow.db.get_value("Site", name, "database_name"),
|
|
start_datetime=start_time,
|
|
stop_datetime=end_time,
|
|
pattern=pattern,
|
|
max_lines=max_lines,
|
|
)
|
|
|
|
return get_binary_log_data(filters)
|
|
|
|
|
|
@jingrow.whitelist()
|
|
@protected("Site")
|
|
def mariadb_processlist(site):
|
|
site = jingrow.get_pg("Site", site)
|
|
agent = Agent(site.server)
|
|
rows = agent.fetch_database_processes(site)
|
|
for row in rows:
|
|
row["state"] = row["state"].capitalize()
|
|
row["query"] = sqlparse.format((row["query"] or "").strip(), keyword_case="upper", reindent=True)
|
|
return rows
|
|
|
|
|
|
@jingrow.whitelist()
|
|
@protected("Site")
|
|
def mariadb_slow_queries(
|
|
name,
|
|
start_datetime,
|
|
stop_datetime,
|
|
max_lines=1000,
|
|
search_pattern=".*",
|
|
normalize_queries=True,
|
|
analyze=False,
|
|
):
|
|
meta = jingrow._dict(
|
|
{
|
|
"site": name,
|
|
"start_datetime": start_datetime,
|
|
"stop_datetime": stop_datetime,
|
|
"max_lines": max_lines,
|
|
"search_pattern": search_pattern,
|
|
"normalize_queries": normalize_queries,
|
|
"analyze": analyze,
|
|
}
|
|
)
|
|
columns, data = execute(filters=meta)
|
|
return {"columns": columns, "data": data}
|
|
|
|
|
|
@jingrow.whitelist()
|
|
@protected("Site")
|
|
def deadlock_report(name, start_datetime, stop_datetime, max_log_size=500):
|
|
from jcloud.jcloud.report.mariadb_deadlock_browser.mariadb_deadlock_browser import execute
|
|
|
|
meta = jingrow._dict(
|
|
{
|
|
"site": name,
|
|
"start_datetime": start_datetime,
|
|
"stop_datetime": stop_datetime,
|
|
"max_log_size": max_log_size,
|
|
}
|
|
)
|
|
_, data = execute(filters=meta)
|
|
return data
|
|
|
|
|
|
# MARKETPLACE - Plausible
|
|
@jingrow.whitelist(allow_guest=True)
|
|
@protected("Marketplace App")
|
|
def plausible_analytics(name):
|
|
response = {}
|
|
settings = jingrow.get_single("Jcloud Settings")
|
|
api_endpoints = {
|
|
"aggregate": "/api/v1/stats/aggregate",
|
|
"timeseries": "/api/v1/stats/timeseries",
|
|
}
|
|
params = {
|
|
"site_id": settings.plausible_site_id,
|
|
"period": "30d",
|
|
"metrics": "visitors,pageviews",
|
|
"filters": f"visit:page==/marketplace/apps/{name}",
|
|
}
|
|
headers = {"Authorization": f"Bearer {settings.get_password('plausible_api_key')}"}
|
|
|
|
for api_type, endpoint in api_endpoints.items():
|
|
res = requests.get(settings.plausible_url + endpoint, params=params, headers=headers)
|
|
if res.status_code == 200 and res.json().get("results"):
|
|
res = res.json().get("results")
|
|
if api_type == "aggregate":
|
|
response.update({"agg_pageviews": res["pageviews"], "agg_visitors": res["visitors"]})
|
|
elif api_type == "timeseries":
|
|
pageviews = [{"value": d["pageviews"], "date": d["date"]} for d in res]
|
|
unique_visitors = [{"value": d["visitors"], "date": d["date"]} for d in res]
|
|
response.update({"pageviews": pageviews, "visitors": unique_visitors})
|
|
|
|
response.update(
|
|
{
|
|
"weekly_installs": jingrow.db.sql(
|
|
f"""
|
|
SELECT DATE_FORMAT(sa.creation, '%Y-%m-%d') AS date, COUNT(*) AS value
|
|
FROM `tabSite Activity` as sa
|
|
WHERE sa.action = 'Install App'
|
|
AND sa.creation >= DATE_SUB(CURDATE(), INTERVAL 8 WEEK)
|
|
AND sa.reason = '{name}'
|
|
GROUP BY WEEK(sa.creation)
|
|
ORDER BY date
|
|
""",
|
|
as_dict=True,
|
|
),
|
|
}
|
|
)
|
|
|
|
return response
|
|
|
|
|
|
def get_pagetype_name(table_name: str) -> str:
|
|
return table_name.removeprefix("tab")
|
|
|
|
|
|
@jingrow.whitelist()
|
|
@protected("Site")
|
|
def mariadb_add_suggested_index(name, table, column):
|
|
record_exists = jingrow.db.exists(
|
|
"Agent Job",
|
|
{
|
|
"site": name,
|
|
"status": ["in", ["Undelivered", "Running", "Pending"]],
|
|
"job_type": "Add Database Index",
|
|
},
|
|
)
|
|
if record_exists:
|
|
jingrow.throw("There is already a pending job for Add Database Index. Please wait until finished.")
|
|
pagetype = get_pagetype_name(table)
|
|
site = jingrow.get_cached_pg("Site", name)
|
|
agent = Agent(site.server)
|
|
agent.add_database_index(site, pagetype=pagetype, columns=[column])
|