优化rmbg并发逻辑,实测并发生效
This commit is contained in:
parent
474ce6f5db
commit
10fb6084f5
@ -13,13 +13,18 @@ import asyncio
|
||||
import io
|
||||
import uuid
|
||||
import httpx
|
||||
import logging
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from settings import settings
|
||||
|
||||
# 关闭不必要的警告
|
||||
logging.basicConfig(
|
||||
level=logging.INFO,
|
||||
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
||||
)
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
warnings.filterwarnings("ignore", category=UserWarning)
|
||||
warnings.filterwarnings("ignore", category=FutureWarning)
|
||||
|
||||
# 设置torch精度
|
||||
torch.set_float32_matmul_precision("high")
|
||||
|
||||
class RmbgService:
|
||||
@ -30,25 +35,43 @@ class RmbgService:
|
||||
self.device = None
|
||||
self.save_dir = settings.save_dir
|
||||
self.download_url = settings.download_url
|
||||
# 确保保存目录存在
|
||||
os.makedirs(self.save_dir, exist_ok=True)
|
||||
# 创建异步HTTP客户端(复用连接,提高性能)
|
||||
self.http_client = httpx.AsyncClient(timeout=30.0, limits=httpx.Limits(max_keepalive_connections=20))
|
||||
|
||||
self.http_client = httpx.AsyncClient(
|
||||
timeout=30.0,
|
||||
limits=httpx.Limits(
|
||||
max_keepalive_connections=50,
|
||||
max_connections=100
|
||||
)
|
||||
)
|
||||
self.executor = ThreadPoolExecutor(max_workers=settings.max_workers)
|
||||
self._gpu_semaphore = None
|
||||
self._max_gpu_concurrent = settings.max_gpu_concurrent
|
||||
self._load_model()
|
||||
|
||||
@property
|
||||
def gpu_semaphore(self):
|
||||
"""延迟初始化GPU信号量"""
|
||||
if self._gpu_semaphore is None:
|
||||
if self._max_gpu_concurrent == 0:
|
||||
return None
|
||||
try:
|
||||
loop = asyncio.get_event_loop()
|
||||
self._gpu_semaphore = asyncio.Semaphore(self._max_gpu_concurrent)
|
||||
except RuntimeError:
|
||||
self._gpu_semaphore = asyncio.Semaphore(self._max_gpu_concurrent)
|
||||
return self._gpu_semaphore
|
||||
|
||||
def _load_model(self):
|
||||
"""加载模型"""
|
||||
# 设置设备
|
||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
t0 = time.time()
|
||||
self.model = AutoModelForImageSegmentation.from_pretrained(self.model_path, trust_remote_code=True)
|
||||
self.model = self.model.to(self.device)
|
||||
self.model.eval() # 设置为评估模式
|
||||
self.model.eval()
|
||||
|
||||
def _process_image_sync(self, image):
|
||||
"""同步处理图像,移除背景(内部方法,在线程池中执行)"""
|
||||
"""同步处理图像,移除背景"""
|
||||
image_size = image.size
|
||||
# 转换图像
|
||||
transform_image = transforms.Compose([
|
||||
transforms.Resize((1024, 1024)),
|
||||
transforms.ToTensor(),
|
||||
@ -56,30 +79,103 @@ class RmbgService:
|
||||
])
|
||||
input_images = transform_image(image).unsqueeze(0).to(self.device)
|
||||
|
||||
# 推理
|
||||
with torch.no_grad():
|
||||
preds = self.model(input_images)[-1].sigmoid().cpu()
|
||||
|
||||
# 处理预测结果
|
||||
pred = preds[0].squeeze()
|
||||
pred_pil = transforms.ToPILImage()(pred)
|
||||
mask = pred_pil.resize(image_size)
|
||||
|
||||
# 添加透明通道
|
||||
image.putalpha(mask)
|
||||
|
||||
# 清理显存
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.empty_cache()
|
||||
gc.collect()
|
||||
|
||||
return image
|
||||
|
||||
def _process_batch_images_sync(self, images_with_info):
|
||||
"""
|
||||
批量处理图像(充分利用GPU并行能力)
|
||||
|
||||
Args:
|
||||
images_with_info: [(image, image_size, index), ...] 图像和元信息列表
|
||||
|
||||
Returns:
|
||||
[(processed_image, index), ...] 处理后的图像和索引
|
||||
"""
|
||||
if not images_with_info:
|
||||
return []
|
||||
|
||||
try:
|
||||
transform_image = transforms.Compose([
|
||||
transforms.Resize((1024, 1024)),
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
||||
])
|
||||
|
||||
batch_images = []
|
||||
for image, image_size, index in images_with_info:
|
||||
try:
|
||||
transformed = transform_image(image)
|
||||
batch_images.append(transformed)
|
||||
except Exception as e:
|
||||
logger.error(f"图片转换失败 (index={index}): {str(e)}")
|
||||
raise
|
||||
|
||||
if not batch_images:
|
||||
raise Exception("没有有效的图片可以处理")
|
||||
|
||||
input_batch = torch.stack(batch_images).to(self.device)
|
||||
|
||||
with torch.no_grad():
|
||||
model_output = self.model(input_batch)
|
||||
if isinstance(model_output, (list, tuple)):
|
||||
preds = model_output[-1].sigmoid().cpu()
|
||||
else:
|
||||
preds = model_output.sigmoid().cpu()
|
||||
|
||||
results = []
|
||||
for i, (image, image_size, index) in enumerate(images_with_info):
|
||||
try:
|
||||
if len(preds.shape) == 4:
|
||||
pred = preds[i].squeeze()
|
||||
elif len(preds.shape) == 3:
|
||||
pred = preds[i]
|
||||
else:
|
||||
pred = preds[i].squeeze()
|
||||
|
||||
pred_pil = transforms.ToPILImage()(pred)
|
||||
mask = pred_pil.resize(image_size)
|
||||
result_image = image.copy()
|
||||
result_image.putalpha(mask)
|
||||
results.append((result_image, index))
|
||||
except Exception as e:
|
||||
logger.error(f"处理预测结果失败 (index={index}): {str(e)}")
|
||||
raise
|
||||
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.empty_cache()
|
||||
gc.collect()
|
||||
|
||||
return results
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"批处理失败: {str(e)}")
|
||||
raise
|
||||
|
||||
async def process_image(self, image):
|
||||
"""异步处理图像,移除背景(在线程池中执行同步操作)"""
|
||||
# 将同步的GPU操作放到线程池中执行,避免阻塞事件循环
|
||||
"""异步处理图像,移除背景"""
|
||||
loop = asyncio.get_event_loop()
|
||||
return await loop.run_in_executor(None, self._process_image_sync, image)
|
||||
return await loop.run_in_executor(self.executor, self._process_image_sync, image)
|
||||
|
||||
async def process_batch_images(self, images_with_info):
|
||||
"""异步批量处理图像"""
|
||||
loop = asyncio.get_event_loop()
|
||||
return await loop.run_in_executor(
|
||||
self.executor,
|
||||
self._process_batch_images_sync,
|
||||
images_with_info
|
||||
)
|
||||
|
||||
def image_to_base64(self, image):
|
||||
"""将PIL Image对象转换为base64字符串"""
|
||||
@ -88,23 +184,10 @@ class RmbgService:
|
||||
return base64.b64encode(buffered.getvalue()).decode('utf-8')
|
||||
|
||||
def save_image_to_file(self, image):
|
||||
"""
|
||||
保存图片到jfile/files目录并返回URL
|
||||
|
||||
Args:
|
||||
image: PIL Image对象
|
||||
|
||||
Returns:
|
||||
图片URL
|
||||
"""
|
||||
# 生成唯一文件名
|
||||
"""保存图片到文件并返回URL"""
|
||||
filename = f"rmbg_{uuid.uuid4().hex[:10]}.png"
|
||||
file_path = os.path.join(self.save_dir, filename)
|
||||
|
||||
# 保存图片
|
||||
image.save(file_path, format="PNG")
|
||||
|
||||
# 构建URL
|
||||
image_url = f"{self.download_url}/{filename}"
|
||||
return image_url
|
||||
|
||||
@ -120,32 +203,26 @@ class RmbgService:
|
||||
"""
|
||||
temp_file = None
|
||||
try:
|
||||
# 检查是否是URL
|
||||
if self.is_valid_url(image_path):
|
||||
try:
|
||||
# 异步下载图片到临时文件
|
||||
temp_file = await self.download_image(image_path)
|
||||
image_path = temp_file
|
||||
except Exception as e:
|
||||
raise Exception(f"下载图片失败: {e}")
|
||||
|
||||
# 验证输入文件是否存在
|
||||
if not os.path.exists(image_path):
|
||||
raise FileNotFoundError(f"输入图像不存在: {image_path}")
|
||||
|
||||
# 加载图像(IO操作,在线程池中执行)
|
||||
loop = asyncio.get_event_loop()
|
||||
image = await loop.run_in_executor(
|
||||
None,
|
||||
self.executor,
|
||||
lambda: Image.open(image_path).convert("RGB")
|
||||
)
|
||||
|
||||
# 异步处理图像
|
||||
image_no_bg = await self.process_image(image)
|
||||
|
||||
# 保存图片到文件并获取URL(IO操作,在线程池中执行)
|
||||
image_url = await loop.run_in_executor(
|
||||
None,
|
||||
self.executor,
|
||||
self.save_image_to_file,
|
||||
image_no_bg
|
||||
)
|
||||
@ -156,7 +233,6 @@ class RmbgService:
|
||||
}
|
||||
|
||||
finally:
|
||||
# 清理临时文件
|
||||
if temp_file and os.path.exists(temp_file):
|
||||
try:
|
||||
os.unlink(temp_file)
|
||||
@ -174,19 +250,16 @@ class RmbgService:
|
||||
处理后的图像内容
|
||||
"""
|
||||
try:
|
||||
# 从文件内容创建PIL Image对象(IO操作,在线程池中执行)
|
||||
loop = asyncio.get_event_loop()
|
||||
image = await loop.run_in_executor(
|
||||
None,
|
||||
self.executor,
|
||||
lambda: Image.open(io.BytesIO(file_content)).convert("RGB")
|
||||
)
|
||||
|
||||
# 异步处理图像
|
||||
image_no_bg = await self.process_image(image)
|
||||
|
||||
# 保存图片到文件并获取URL(IO操作,在线程池中执行)
|
||||
image_url = await loop.run_in_executor(
|
||||
None,
|
||||
self.executor,
|
||||
self.save_image_to_file,
|
||||
image_no_bg
|
||||
)
|
||||
@ -200,60 +273,77 @@ class RmbgService:
|
||||
raise Exception(f"处理图片失败: {e}")
|
||||
|
||||
async def process_batch(self, urls):
|
||||
"""
|
||||
批量处理多个URL图像,并发处理并流式返回结果
|
||||
|
||||
Args:
|
||||
urls: 图片URL列表
|
||||
|
||||
Yields:
|
||||
每个图片的处理结果(按完成顺序返回)
|
||||
"""
|
||||
"""批量处理多个URL图像,流水线并发模式"""
|
||||
total = len(urls)
|
||||
success_count = 0
|
||||
error_count = 0
|
||||
batch_start_time = time.time()
|
||||
|
||||
# 创建并发任务
|
||||
async def process_single_url(index, url):
|
||||
"""处理单个URL的包装函数"""
|
||||
async def download_and_process(index, url):
|
||||
"""下载并处理单张图片"""
|
||||
url_str = str(url)
|
||||
try:
|
||||
url_str = str(url)
|
||||
result = await self.remove_background(url_str)
|
||||
if self.is_valid_url(url_str):
|
||||
temp_file = await self.download_image(url_str)
|
||||
image = await asyncio.get_event_loop().run_in_executor(
|
||||
self.executor,
|
||||
lambda: Image.open(temp_file).convert("RGB")
|
||||
)
|
||||
os.unlink(temp_file)
|
||||
else:
|
||||
image = await asyncio.get_event_loop().run_in_executor(
|
||||
self.executor,
|
||||
lambda: Image.open(url_str).convert("RGB")
|
||||
)
|
||||
|
||||
processed_image = await self.process_image(image)
|
||||
|
||||
loop = asyncio.get_event_loop()
|
||||
image_url = await loop.run_in_executor(
|
||||
self.executor,
|
||||
self.save_image_to_file,
|
||||
processed_image
|
||||
)
|
||||
|
||||
return {
|
||||
"index": index,
|
||||
"total": total,
|
||||
"original_url": url_str,
|
||||
"status": "success",
|
||||
"image_url": result["image_url"],
|
||||
"image_url": image_url,
|
||||
"message": "处理成功"
|
||||
}
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"处理失败 (index={index}): {str(e)}")
|
||||
return {
|
||||
"index": index,
|
||||
"total": total,
|
||||
"original_url": str(url),
|
||||
"original_url": url_str,
|
||||
"status": "error",
|
||||
"error": str(e),
|
||||
"message": f"处理失败: {str(e)}"
|
||||
}
|
||||
|
||||
# 创建所有任务
|
||||
tasks = [
|
||||
process_single_url(i, url)
|
||||
download_and_process(i, url)
|
||||
for i, url in enumerate(urls, 1)
|
||||
]
|
||||
|
||||
# 并发执行所有任务,使用as_completed按完成顺序返回
|
||||
completed_order = 0
|
||||
for coro in asyncio.as_completed(tasks):
|
||||
result = await coro
|
||||
completed_order += 1
|
||||
|
||||
if result["status"] == "success":
|
||||
success_count += 1
|
||||
else:
|
||||
error_count += 1
|
||||
|
||||
# 更新统计信息
|
||||
result["success_count"] = success_count
|
||||
result["error_count"] = error_count
|
||||
result["completed_order"] = completed_order
|
||||
result["batch_elapsed"] = round(time.time() - batch_start_time, 2)
|
||||
|
||||
yield result
|
||||
|
||||
@ -271,7 +361,6 @@ class RmbgService:
|
||||
response = await self.http_client.get(url)
|
||||
response.raise_for_status()
|
||||
|
||||
# 创建临时文件并写入内容(IO操作,在线程池中执行)
|
||||
def write_temp_file(content):
|
||||
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.png')
|
||||
temp_file.write(content)
|
||||
@ -280,7 +369,7 @@ class RmbgService:
|
||||
|
||||
loop = asyncio.get_event_loop()
|
||||
temp_file_path = await loop.run_in_executor(
|
||||
None,
|
||||
self.executor,
|
||||
write_temp_file,
|
||||
response.content
|
||||
)
|
||||
@ -291,9 +380,8 @@ class RmbgService:
|
||||
|
||||
async def cleanup(self):
|
||||
"""清理资源"""
|
||||
# 关闭HTTP客户端
|
||||
await self.http_client.aclose()
|
||||
self.executor.shutdown(wait=True)
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.empty_cache()
|
||||
gc.collect()
|
||||
print("资源已清理")
|
||||
gc.collect()
|
||||
@ -26,6 +26,10 @@ class Settings(BaseSettings):
|
||||
jingrow_api_key: Optional[str] = None
|
||||
jingrow_api_secret: Optional[str] = None
|
||||
|
||||
# 并发控制配置
|
||||
max_workers: int = 30 # 线程池最大工作线程数(根据CPU核心数调整,22核44线程可设置20-30)
|
||||
max_gpu_concurrent: int = 0 # GPU最大并发数(0表示不限制,根据显存大小设置,24GB显存建议10-15)
|
||||
|
||||
class Config:
|
||||
env_file = ".env"
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user